Multidrug resistance phenotype of human BRO melanoma cells transfected with a wild-type human mdr1 complementary DNA.
نویسندگان
چکیده
We have transfected a eukaryotic expression vector containing a mdr1 complementary DNA isolated from normal human liver into human BRO melanoma cells to study the drug-resistant phenotype produced by the exclusive overexpression of normal human mdr1 P-glycoprotein. The drug resistance pattern of mdr1-transfected clones includes relatively high resistance to gramicidin D (about 300-fold), vincristine (about 100-fold), and actinomycin D (about 100-fold) and a lower degree of resistance to doxorubicin (about 10-fold), VP16-213 (about 10-fold), and colchicine (about 6-fold). The transfectants did not exhibit resistance to trimetrexate, cis-platinum, mitomycin C, 1-beta-D-arabinofuranosylcytosine, bleomycin, G418, or magainin-2-amide; they were slightly more sensitive to verapamil (2-fold) but not to Triton X-100. As in other multidrug-resistant cell lines, resistance to vincristine could be reversed by verapamil and, more effectively, by cyclosporin A. Chloroquine only marginally increased drug sensitivity in mdr1-transfected cells. Gramicidin D resistance was also reversed by verapamil, suggesting that the mechanism of resistance to this polypeptide antibiotic is similar to that of other drugs transported by P-glycoprotein. Thus, expression of the wild-type mdr1 complementary DNA induces a drug-resistant phenotype similar to that induced by mdr1 complementary DNAs isolated from drug-resistant cell lines with relatively low colchicine resistance. As other cell lines may display a different pattern of drug resistance, it is clear that other resistance mechanisms or cell type-specific factors may modulate the resistance. mdr1-transfected cell lines provide a convenient tool for the identification of P-glycoprotein-mediated phenomena.
منابع مشابه
Expression of a human multidrug resistance gene in ovarian carcinomas.
Expression of the human MDR1 gene has been shown to confer the multidrug resistance (MDR) phenotype to sensitive cells. To investigate the possible contribution of the MDR phenotype to chemoresistance in ovarian carcinoma, we have analyzed MDR1 gene expression in fresh carcinoma specimens from 50 patients. Fifteen received chemotherapy before surgery and were judged as poor responders. Thirty-f...
متن کاملANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO
The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...
متن کاملBoth P-gp and MRP2 mediate transport of Lopinavir, a protease inhibitor.
Polarized epithelial non-human (canine) cell lines stably transfected with human or murine complementary DNA (cDNA) encoding for various efflux transporters (P-gp/MDR1, MRP1, MRP2, and Bcrp1) were used to study transepithelial transport of Lopinavir (LVR) and compare results with the MDCKII-wild type cells. These transmembrane proteins cause multidrug resistance by decreasing the total intracel...
متن کاملAnalysis of random recombination between human MDR1 and mouse mdr1a cDNA in a pHaMDR-dihydrofolate reductase bicistronic expression system.
Human P-glycoprotein (Pgp) confers multidrug resistance (MDR) to otherwise sensitive cells. The homologous mouse Pgps, which are encoded by mouse mdr1a (also known as mdr3) and mdr1b (also known as mdr1), confer different degrees of resistance to the same MDR drugs and inhibitors. To create recombinants for the study of sequences responsible for these differences in drug-resistance, chimeric cD...
متن کاملMultidrug resistance P-glycoprotein hampers the access of cortisol but not of corticosterone to mouse and human brain.
In the present study, we investigated the role of the multidrug resistance (mdr) P-glycoprotein (Pgp) at the blood-brain barrier in the control of access of cortisol and corticosterone to the mouse and human brain. [(3)H]Cortisol poorly penetrated the brain of adrenalectomized wild-type mice, but the uptake was 3.5-fold enhanced after disruption of Pgp expression in mdr 1a(-/-) mice. In sharp c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 50 6 شماره
صفحات -
تاریخ انتشار 1990